More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

نویسنده

  • T. N. Palmer
چکیده

This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Near Real-Time CALIPSO and CloudSat Observations to Assess the Performance of a Numerical Weather Prediction Model

The Centre for Australian Weather and Climate Research (CAWCR) is developing the Australian Community Climate and Earth System Simulator (ACCESS), a global, coupled atmosphere-ocean climate model based on the Unified Model of the U.K. Met. Office. A high-resolution atmosphere-only version combined with a 4DVAR assimilation system is being used for numerical weather prediction. Validation of the...

متن کامل

Evaluation of Mixed-Phase Cloud Parametrizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Optimization of Airport Terminal-Area Air Traffic Operations under Uncertain Weather Conditions

Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System, especially during summer. Although Air Traffic Flow Management algorithms exist to schedule and route traffic in the face of disruptions, they require reliable forecasts of airspace capacity. However, there exists a gap between the spatial and temporal accuracy of aviation weather...

متن کامل

14: A Next Generation Atmospheric Prediction System for the Navy

A long-term goal of this project is to develop a global cloud-permitting (~3-km resolution) forecast capability as part of the multi-agency next-generation Earth System Prediction Capability (ESPC) initiative. Within the next decade or less, computational platforms with more than 1,000,000 processors will be commonly available and high-fidelity global weather forecasts with variable resolution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 372  شماره 

صفحات  -

تاریخ انتشار 2014